13465 measured reflections

 $R_{\rm int} = 0.086$

7059 independent reflections

5106 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N-Trityl-2-(tritylsulfanyl)aniline

Adam Neuba, Ulrich Flörke* and Gerald Henkel

Department Chemie, Fakultät für Naturwissenschaften, Universität Paderborn, Warburgerstrasse 100, D-33098 Paderborn, Germany Correspondence e-mail: ulrich.floerke@upb.de

Received 13 April 2011: accepted 23 September 2011

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.005 Å; R factor = 0.058; wR factor = 0.099; data-to-parameter ratio = 16.8.

The title compound, C44H35NS, is a derivative of aminothiophenol and possesses a protected S-triphenylmethyl thioether and an N-triphenylmethylamine functional group. The trityl groups show an anti orientation, with C-C-N-C and C-C-S-C torsion angles of -151.0(3) and $-105.3(2)^{\circ}$, respectively. There is an intramolecular N-H···S hydrogen bond.

Related literature

For the synthesis, see: Neuba et al. (2011). For a related structure, see: Neuba et al. (2007). For background to complexes of amine guanidine hybrides with first row transition elements, see: Börner et al. (2009); Herres et al. (2005); Herres-Pawlis et al. (2005, 2009); Neuba et al. (2007, 2008, 2010, 2011); Pohl et al. (2000); Wittmann et al. (2001).

Experimental

Crystal data C44H35NS $M_{\rm r} = 609.79$ Monoclinic, P21 a = 8.2377 (10) Åb = 23.513 (3) Å c = 9.0894 (10) Å $\beta = 113.512 \ (3)^{\circ}$

V = 1614.4 (3) Å³ Z = 2Mo $K\alpha$ radiation $\mu = 0.13 \text{ mm}^-$ T = 120 K $0.36 \times 0.23 \times 0.20 \text{ mm}$ Data collection

```
Bruker SMART APEX
  diffractometer
Absorption correction: multi-scan
  (SADABS; Sheldrick, 2004)
  T_{\rm min} = 0.953, \ T_{\rm max} = 0.974
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.058$	H atoms treated by a mixture of
$wR(F^2) = 0.099$	independent and constrained
S = 0.91	refinement
7059 reflections	$\Delta \rho_{\rm max} = 0.36 \text{ e } \text{\AA}^{-3}$
419 parameters	$\Delta \rho_{\rm min} = -0.33 \ {\rm e} \ {\rm \AA}^{-3}$
1 restraint	Absolute structure: Flack (1983),
	3130 Friedel pairs
	Flack parameter: 0.03 (7)

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdot \cdot \cdot A$	$D - H \cdots A$
$N1 - H1 \cdots S1$	0.81 (3)	2.46 (3)	2.984 (3)	123 (1)

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

We thank the German research council (DFG) and the Federal Ministry of education and research (BMBF) for continued support of our work. AN thanks the University of Paderborn for granting a doctorate scholarship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NK2100).

References

- Börner, J., Flörke, U., Huber, K., Döring, A., Kuckling, D. & Herres-Pawlis, S. (2009). Chem. Eur. J. 15, 2362-2376.
- Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Herres, S., Heuwing, A. J., Flörke, U., Schneider, J. & Henkel, G. (2005). Inorg. Chim. Acta, 358, 1089-1095.
- Herres-Pawlis, S., Neuba, A., Seewald, O., Seshadri, T., Egold, H., Flörke, U. & Henkel, G. (2005). Eur. J. Org. Chem. pp. 4879-4890.
- Herres-Pawlis, S., Verma, P., Haase, R., Kang, P., Lyons, C. T., Wasinger, E. C., Flörke, U., Henkel, G. & Stack, T. D. P. (2009). J. Am. Chem. Soc. 131, 1154-1169
- Neuba, A., Flörke, U. & Henkel, G. (2007). Acta Cryst. E63, 04683.
- Neuba, A., Flörke, U., Meyer-Klaucke, W., Salomone-Stagni, M., Bill, E., Bothe, E., Höfer, P. & Henkel, G. (2011). Angew. Chem. Int. Ed. 50, 4503-4507.
- Neuba, A., Haase, R., Bernard, M., Flörke, U. & Herres-Pawlis, S. (2008). Z. Anorg. Allg. Chem. 634, 2511-2517.
- Neuba, A., Herres-Pawlis, S., Seewald, O., Börner, J., Heuwing, J., Flörke, U. & Henkel, G. (2010). Z. Anorg. Allg. Chem. 636, 2641-2649.
- Pohl, S., Harmjanz, M., Schneider, J., Saak, W. & Henkel, G. (2000). J. Chem. Soc. Dalton Trans. pp. 3473-3479.
- Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wittmann, H., Raab, V., Schorm, A., Plackmeyer, J. & Sundermeyer, J. (2001). Eur. J. Inorg. Chem. pp. 1937-1948.

Acta Cryst. (2011). E67, o2887 [doi:10.1107/S1600536811039183]

N-Trityl-2-(tritylsulfanyl)aniline

A. Neuba, U. Flörke and G. Henkel

Comment

The synthesis and characterization of novel molecules containing nitrogen and sulfur as donor functions and their application in synthesis of sulfur copper complexes is important for biomimetic copper-sulfur chemistry. In search of multifunctional ligands we have extended our studies to guanidyl-type systems with N-donor functions. The first derivative, the ligand bis(tetramethyl-guanidino)propylene as well as amine guanidine hybrids and their complexes with Cu, Fe, Ni, Ag, Mn, Co and Zn have recently been investigated (Pohl et al., 2000; Wittmann et al., 2001; Herres-Pawlis et al., 2005, 2009; Herres et al., 2005; Neuba et al., 2008; 2010; Börner et al. 2009). We have now developed several sulfur guanidine hybrids based on aminothiophenol and cysteamine (Neuba et al., 2007; Neuba et al. 2011). The synthesized sulfur guanidine compounds possess aliphatic and aromatic thioethers or disulfide groups and were used in the synthesis of copper thiolate complexes to mimic active centres like the CuA in cytochrome-c oxidase and N2O-reductase. In the course of these experiments we synthesized the title compound as a by-product from the reaction of 1,1,3,3-tetramethyl-2-(2-(tritylthio)phenyl)guanidine with [Cu(MeCN)₄]PF₆ in MeCN (Neuba et al., 2011). The molecular structure of C₄₄H₃₅NS shows two trityl units with dihedral angles between the phenyl planes C11-C16, C21-C26 and C31-C36 of 84.7 (1)°, 68.2 (1)° and 80.9 (1)° and for planes C41—C46, C51—C56 and C61—C66 the angles measure 88.7 (1)°, 77.6 (1)° and 74.5 (1)°, respectively. Orientation of the trityl groups relative to the C1—C6 ring is indicated from the torsion angles C1—C6—N1—C8 of 151.0 (3)° and C6-C1-S1-C7 of 105.3 (2)°. The title compound shows an intramolecular N-H···S bond with H···S 2.46 Å and N—H···S angle of 122°.

Experimental

Full synthetic details and spectroscopic as well as analytical characterization is given in Neuba et al. (2011).

Refinement

H atoms were clearly identified in difference syntheses, idealized and refined riding on the carbon atoms with C—H = 0.95 Å, and with isotropic displacement parameters $U_{iso}(H) = 1.2U(C/N_{eq})$. The N-bound H atom was refined freely. The value of the Flack parameter (0.03 (7)) was determined from 3130 Friedel pairs.

Figures

Fig. 1. Molecular structure with displacement ellipsoids drawn at the 50% probability level. Aromatic-H atoms omitted for clarity.

N-Trityl-2-(tritylsulfanyl)aniline

Crystal data

C44H35NS $M_r = 609.79$ Monoclinic, P21 Hall symbol: P 2yb a = 8.2377 (10) Å *b* = 23.513 (3) Å c = 9.0894 (10) Å $\beta = 113.512 (3)^{\circ}$ V = 1614.4 (3) Å³ Z = 2

Data collection

Bruker SMART APEX diffractometer	7059 independent reflections
Radiation source: sealed tube	5106 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.086$
ϕ and ω scans	$\theta_{\text{max}} = 27.9^{\circ}, \ \theta_{\text{min}} = 1.7^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 2004)	$h = -10 \rightarrow 10$
$T_{\min} = 0.953, T_{\max} = 0.974$	$k = -30 \rightarrow 30$
13465 measured reflections	$l = -11 \rightarrow 9$
graphite φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 2004) $T_{\min} = 0.953, T_{\max} = 0.974$ 13465 measured reflections	$R_{int} = 0.086$ $\theta_{max} = 27.9^{\circ}, \ \theta_{min} = 1.7^{\circ}$ $h = -10 \rightarrow 10$ $k = -30 \rightarrow 30$ $l = -11 \rightarrow 9$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.058$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.099$	$w = 1/[\sigma^2(F_o^2) + (0.0245P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 0.91	$(\Delta/\sigma)_{\rm max} < 0.001$
7059 reflections	$\Delta \rho_{max} = 0.36 \text{ e} \text{ Å}^{-3}$
419 parameters	$\Delta \rho_{min} = -0.33 \text{ e } \text{\AA}^{-3}$
1 restraint	Absolute structure: Flack (1983), 3130 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: 0.03 (7)

F(000) = 644

 $\theta = 2.6 - 25.0^{\circ}$

 $\mu = 0.13 \text{ mm}^{-1}$

Prism, colourless

 $0.36 \times 0.23 \times 0.20 \text{ mm}$

T = 120 K

 $D_{\rm x} = 1.254 {\rm Mg m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 756 reflections

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

S1 0.84957 (0) 0.45352 (2) 0.52((0, 0) 0.0	00400 (17)
0.84857(9) $0.45253(3)$ $0.53668(8)$ 0.0	02420 (17)
N1 0.8060 (3) 0.53874 (10) 0.7596 (3) 0.0	0266 (6)
C1 1.0204 (4) 0.47875 (11) 0.7141 (3) 0.0	0254 (7)
C2 1.1929 (4) 0.46002 (13) 0.7572 (4) 0.0	0309 (7)
H2A 1.2192 0.4334 0.6911 0.0	037*
C3 1.3274 (4) 0.47992 (13) 0.8964 (4) 0.0	0380 (9)
H3A 1.4455 0.4669 0.9268 0.0	046*
C4 1.2869 (4) 0.51873 (13) 0.9892 (4) 0.0	0384 (9)
H4A 1.3777 0.5318 1.0859 0.0	046*
C5 1.1180 (4) 0.53900 (12) 0.9452 (4) 0.0	0329 (8)
H5A 1.0947 0.5665 1.0109 0.0	039*
C6 0.9796 (4) 0.52008 (11) 0.8058 (3) 0.0	0253 (7)
C7 0.7929 (3) 0.37851 (11) 0.5851 (3) 0.0	0183 (6)
C8 0.7459 (4) 0.59533 (11) 0.7893 (3) 0.0	0240 (7)
C11 0.6271 (3) 0.36367 (11) 0.4338 (3) 0.0	0199 (6)
C12 0.4949 (4) 0.40342 (12) 0.3586 (4) 0.0	0294 (7)
H12A 0.5070 0.4410 0.4000 0.0	035*
C13 0.3454 (4) 0.38895 (13) 0.2239 (4) 0.0	0322 (8)
H13A 0.2580 0.4170 0.1727 0.0	039*
C14 0.3224 (4) 0.33499 (13) 0.1644 (3) 0.0	0294 (7)
H14A 0.2195 0.3253 0.0726 0.0	035*
C15 0.4505 (4) 0.29457 (13) 0.2391 (4) 0.0	0306 (7)
H15A 0.4350 0.2568 0.1988 0.0	037*
C16 0.6020 (4) 0.30866 (12) 0.3729 (3) 0.0	0241 (6)
H16A 0.6891 0.2804 0.4231 0.0	029*
C21 0.7538 (4) 0.37820 (11) 0.7363 (3) 0.0	0181 (6)
C22 0.5905 (4) 0.36177 (13) 0.7314 (4) 0.0	0293 (7)
H22A 0.4983 0.3527 0.6310 0.0	035*
C23 0.5580 (4) 0.35815 (14) 0.8702 (4) 0.0	0337 (8)
H23A 0.4450 0.3464 0.8635 0.0	040*
C24 0.6880 (4) 0.37143 (13) 1.0161 (4) 0.0	0301 (7)
H24A 0.6655 0.3695 1.1106 0.0	036*
C25 0.8527 (4) 0.38774 (12) 1.0241 (3) 0.0	0267 (7)
H25A 0.9436 0.3972 1.1249 0.0	032*
C26 0.8859 (4) 0.39040 (11) 0.8872 (3) 0.0	0233 (6)
H26A 1.0008 0.4007 0.8955 0.0	028*
C31 0.9462 (3) 0.33825 (11) 0.5998 (3) 0.0	0194 (6)
C32 1.0006 (4) 0.29479 (12) 0.7134 (3) 0.0	0266 (7)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H32A	0.9472	0.2910	0.7882	0.032*
C33	1.1315 (4)	0.25724 (14)	0.7182 (4)	0.0355 (8)
H33A	1.1680	0.2282	0.7974	0.043*
C34	1.2093 (4)	0.26109 (13)	0.6115 (4)	0.0322 (8)
H34A	1.3001	0.2352	0.6170	0.039*
C35	1.1552 (4)	0.30282 (13)	0.4955 (3)	0.0291 (7)
H35A	1.2070	0.3053	0.4192	0.035*
C36	1.0258 (4)	0.34111 (12)	0.4900 (3)	0.0242 (6)
H36A	0.9902	0.3699	0.4100	0.029*
C41	0.5692 (4)	0.60614 (12)	0.6443 (3)	0.0242 (7)
C42	0.4388 (4)	0.56465 (13)	0.6016 (4)	0.0348 (8)
H42A	0.4593	0.5305	0.6623	0.042*
C43	0.2795 (4)	0.57226 (15)	0.4718 (4)	0.0442 (9)
H43A	0.1917	0.5434	0.4435	0.053*
C44	0.2479 (4)	0.62216 (16)	0.3829 (4)	0.0436 (9)
H44A	0.1395	0.6273	0.2924	0.052*
C45	0.3742 (4)	0.66375 (15)	0.4266 (4)	0.0389 (8)
H45A	0.3521	0.6981	0.3669	0.047*
C46	0.5341 (4)	0.65648 (13)	0.5570 (4)	0.0307 (7)
H46A	0.6200	0.6860	0.5866	0.037*
C51	0.7100 (4)	0.59382 (12)	0.9423 (3)	0.0244 (7)
C52	0.7844 (4)	0.55322 (13)	1.0613 (4)	0.0355 (8)
H52A	0.8529	0.5233	1.0448	0.043*
C53	0.7604 (4)	0.55555 (16)	1.2037 (4)	0.0452 (10)
H53A	0.8146	0.5277	1.2842	0.054*
C54	0.6586 (5)	0.59792 (17)	1.2298 (4)	0.0460 (10)
H54A	0.6456	0.6001	1.3289	0.055*
C55	0.5768 (4)	0.63677 (15)	1.1108 (4)	0.0382 (8)
H55A	0.5029	0.6653	1.1255	0.046*
C56	0.6017 (4)	0.63455 (13)	0.9692 (4)	0.0321 (7)
H56A	0.5433	0.6616	0.8876	0.038*
C61	0.8871 (4)	0.64051 (11)	0.8003 (3)	0.0242 (7)
C62	0.9465 (4)	0.68078 (12)	0.9228 (4)	0.0295 (7)
H62A	0.8978	0.6819	1.0014	0.035*
C63	1.0779 (4)	0.71948 (13)	0.9296 (4)	0.0364 (8)
H63A	1.1179	0.7468	1.0135	0.044*
C64	1.1499 (4)	0.71877 (13)	0.8180 (4)	0.0338 (8)
H64A	1.2393	0.7453	0.8240	0.041*
C65	1.0909 (4)	0.67883 (13)	0.6957 (4)	0.0324 (7)
H65A	1.1407	0.6777	0.6177	0.039*
C66	0.9601 (4)	0.64067 (12)	0.6869 (3)	0.0279 (7)
H66A	0.9194	0.6140	0.6015	0.033*
H1	0.742 (3)	0.5239 (12)	0.676 (3)	0.017 (8)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0295 (4)	0.0185 (3)	0.0221 (4)	-0.0008 (3)	0.0077 (3)	0.0032 (3)

N1	0.0254 (14)	0.0186 (13)	0.0276 (15)	-0.0025 (11)	0.0018 (12)	-0.0080 (11)
C1	0.0235 (15)	0.0218 (15)	0.0280 (17)	-0.0080 (12)	0.0071 (13)	0.0032 (13)
C2	0.0270 (15)	0.0234 (16)	0.0445 (18)	-0.0023 (13)	0.0166 (14)	0.0061 (15)
C3	0.0244 (16)	0.0309 (18)	0.051 (2)	-0.0019 (14)	0.0074 (16)	0.0084 (17)
C4	0.0296 (17)	0.0229 (16)	0.046 (2)	-0.0061 (13)	-0.0032 (15)	0.0010 (15)
C5	0.0320 (17)	0.0198 (15)	0.0352 (18)	-0.0051 (13)	0.0011 (15)	-0.0021 (14)
C6	0.0300 (16)	0.0153 (14)	0.0287 (17)	-0.0035 (12)	0.0099 (14)	0.0041 (13)
C7	0.0198 (13)	0.0148 (13)	0.0195 (14)	-0.0012 (11)	0.0070 (12)	0.0034 (12)
C8	0.0304 (16)	0.0172 (14)	0.0230 (15)	-0.0008 (12)	0.0092 (13)	-0.0012 (12)
C11	0.0227 (14)	0.0204 (14)	0.0174 (15)	0.0000 (12)	0.0089 (12)	0.0005 (12)
C12	0.0308 (16)	0.0215 (16)	0.0295 (17)	0.0026 (13)	0.0055 (14)	-0.0005 (13)
C13	0.0229 (15)	0.0320 (18)	0.0317 (18)	0.0051 (13)	0.0002 (14)	0.0099 (15)
C14	0.0227 (15)	0.0432 (19)	0.0189 (16)	-0.0106 (14)	0.0048 (13)	-0.0035 (14)
C15	0.0302 (17)	0.0278 (16)	0.0367 (18)	-0.0052 (14)	0.0165 (15)	-0.0104 (14)
C16	0.0230 (15)	0.0246 (15)	0.0247 (16)	0.0009 (12)	0.0096 (13)	0.0002 (13)
C21	0.0228 (14)	0.0133 (13)	0.0168 (14)	0.0046 (11)	0.0064 (12)	0.0036 (11)
C22	0.0230 (15)	0.0422 (18)	0.0228 (16)	0.0007 (14)	0.0092 (13)	-0.0043 (14)
C23	0.0233 (15)	0.046 (2)	0.0361 (19)	-0.0021 (14)	0.0164 (15)	-0.0045 (16)
C24	0.0366 (18)	0.0369 (18)	0.0221 (16)	0.0089 (14)	0.0172 (14)	0.0044 (14)
C25	0.0327 (16)	0.0287 (16)	0.0188 (15)	0.0015 (13)	0.0105 (13)	-0.0016 (13)
C26	0.0227 (14)	0.0209 (15)	0.0243 (15)	-0.0019 (12)	0.0075 (13)	0.0037 (12)
C31	0.0180 (13)	0.0235 (15)	0.0163 (14)	-0.0029 (11)	0.0062 (11)	-0.0012 (12)
C32	0.0285 (16)	0.0309 (16)	0.0251 (16)	0.0050 (13)	0.0155 (13)	0.0039 (14)
C33	0.0423 (19)	0.0336 (19)	0.0308 (18)	0.0146 (15)	0.0146 (16)	0.0066 (15)
C34	0.0257 (16)	0.0344 (18)	0.0354 (18)	0.0106 (14)	0.0111 (15)	-0.0006 (15)
C35	0.0275 (16)	0.0393 (18)	0.0275 (17)	-0.0037 (14)	0.0186 (14)	-0.0066 (14)
C36	0.0263 (15)	0.0240 (15)	0.0212 (15)	-0.0014 (13)	0.0083 (13)	-0.0003 (12)
C41	0.0279 (16)	0.0262 (16)	0.0183 (15)	0.0052 (13)	0.0091 (13)	-0.0026 (13)
C42	0.0324 (18)	0.0322 (17)	0.0352 (19)	-0.0002 (14)	0.0084 (15)	0.0036 (15)
C43	0.0320 (19)	0.043 (2)	0.048 (2)	-0.0010 (16)	0.0056 (17)	-0.0078 (18)
C44	0.0309 (18)	0.063 (3)	0.0275 (18)	0.0101 (18)	0.0021 (15)	-0.0063 (18)
C45	0.042 (2)	0.047 (2)	0.0294 (19)	0.0180 (17)	0.0163 (16)	0.0148 (16)
C46	0.0351 (17)	0.0312 (17)	0.0313 (17)	0.0045 (14)	0.0191 (15)	0.0036 (14)
C51	0.0268 (15)	0.0213 (15)	0.0228 (15)	-0.0110 (12)	0.0074 (13)	-0.0006 (13)
C52	0.0326 (17)	0.0398 (19)	0.0291 (18)	-0.0058 (15)	0.0068 (15)	0.0079 (15)
C53	0.0334 (19)	0.064 (3)	0.031 (2)	-0.0087 (18)	0.0054 (16)	0.0215 (18)
C54	0.044 (2)	0.075 (3)	0.0207 (18)	-0.032 (2)	0.0151 (16)	-0.0044 (19)
C55	0.048 (2)	0.0394 (19)	0.0347 (19)	-0.0236 (17)	0.0243 (16)	-0.0152 (17)
C56	0.0425 (18)	0.0241 (16)	0.0332 (18)	-0.0085 (15)	0.0190 (15)	-0.0007 (15)
C61	0.0297 (16)	0.0177 (15)	0.0244 (15)	0.0024 (12)	0.0099 (13)	0.0055 (12)
C62	0.0382 (18)	0.0236 (15)	0.0352 (18)	-0.0038 (14)	0.0237 (15)	-0.0040 (14)
C63	0.0426 (19)	0.0266 (17)	0.046 (2)	-0.0096 (14)	0.0240 (17)	-0.0114 (15)
C64	0.0348 (18)	0.0287 (17)	0.046 (2)	-0.0032 (14)	0.0246 (16)	-0.0011 (16)
C65	0.0390 (19)	0.0361 (18)	0.0308 (18)	0.0025 (15)	0.0230 (16)	0.0057 (15)
C66	0.0326 (17)	0.0236 (16)	0.0257 (16)	0.0047 (13)	0.0098 (14)	0.0019 (13)
Geometric po	irameters (Å. °)					
\$1_C1		1 770 (3)	C21	_C36	1 20	(A)
		1.117 (3)	031-	0.50	1.39	, (T)

S1—C7	1.896 (3)	C32—C33	1.381 (4)
N1—C6	1.391 (3)	C32—H32A	0.9500
N1—C8	1.482 (4)	C33—C34	1.362 (4)
N1—H1	0.81 (3)	С33—Н33А	0.9500
C1—C2	1.386 (4)	C34—C35	1.378 (4)
C1—C6	1.406 (4)	C34—H34A	0.9500
C2—C3	1.389 (4)	C35—C36	1.381 (4)
C2—H2A	0.9500	С35—Н35А	0.9500
C3—C4	1.371 (5)	С36—Н36А	0.9500
С3—НЗА	0.9500	C41—C42	1.387 (4)
C4—C5	1.371 (4)	C41—C46	1.390 (4)
C4—H4A	0.9500	C42—C43	1.382 (4)
C5—C6	1.397 (4)	C42—H42A	0.9500
C5—H5A	0.9500	C43—C44	1.389 (5)
C7—C21	1.532 (4)	C43—H43A	0.9500
C7—C31	1.541 (4)	C44—C45	1.366 (5)
C7—C11	1.543 (4)	C44—H44A	0.9500
C8—C51	1.534 (4)	C45—C46	1.387 (4)
C8—C41	1.546 (4)	C45—H45A	0.9500
C8—C61	1.548 (4)	C46—H46A	0.9500
C11—C16	1.389 (4)	C51—C52	1.389 (4)
C11—C12	1.390 (4)	C51—C56	1.395 (4)
C12—C13	1.389 (4)	C52—C53	1.385 (5)
C12—H12A	0.9500	С52—Н52А	0.9500
C13—C14	1.363 (4)	C53—C54	1.382 (5)
C13—H13A	0.9500	С53—Н53А	0.9500
C14—C15	1.380 (4)	C54—C55	1.370 (5)
C14—H14A	0.9500	C54—H54A	0.9500
C15—C16	1.392 (4)	C55—C56	1.383 (4)
C15—H15A	0.9500	С55—Н55А	0.9500
C16—H16A	0.9500	С56—Н56А	0.9500
C21—C22	1.383 (4)	C61—C66	1.385 (4)
C21—C26	1.399 (4)	C61—C62	1.393 (4)
C22—C23	1.393 (4)	C62—C63	1.396 (4)
C22—H22A	0.9500	C62—H62A	0.9500
C23—C24	1.367 (4)	C63—C64	1.365 (4)
C23—H23A	0.9500	С63—Н63А	0.9500
C24—C25	1.383 (4)	C64—C65	1.387 (4)
C24—H24A	0.9500	C64—H64A	0.9500
C25—C26	1.378 (4)	C65—C66	1.380 (4)
C25—H25A	0.9500	С65—Н65А	0.9500
C26—H26A	0.9500	С66—Н66А	0.9500
C31—C32	1.394 (4)		
C1—S1—C7	106.66 (12)	C32—C31—C7	121.7 (2)
C6—N1—C8	127.3 (2)	C36—C31—C7	120.7 (2)
C6—N1—H1	111 (2)	C33—C32—C31	120.6 (3)
C8—N1—H1	115 (2)	C33—C32—H32A	119.7
C2—C1—C6	120.9 (3)	C31—C32—H32A	119.7
C2—C1—S1	120.1 (2)	C34—C33—C32	121.2 (3)

C6—C1—S1	119.0 (2)	С34—С33—Н33А	119.4
C1—C2—C3	120.4 (3)	С32—С33—Н33А	119.4
C1—C2—H2A	119.8	C33—C34—C35	119.5 (3)
C3—C2—H2A	119.8	С33—С34—Н34А	120.3
C4—C3—C2	118.9 (3)	C35—C34—H34A	120.3
С4—С3—НЗА	120.6	C34—C35—C36	120.1 (3)
С2—С3—НЗА	120.6	C34—C35—H35A	119.9
C5—C4—C3	121.3 (3)	С36—С35—Н35А	119.9
C5—C4—H4A	119.3	C35—C36—C31	121.2 (3)
C3—C4—H4A	119.3	С35—С36—Н36А	119.4
C4—C5—C6	121.3 (3)	С31—С36—Н36А	119.4
C4—C5—H5A	119.3	C42—C41—C46	118.5 (3)
С6—С5—Н5А	119.3	C42—C41—C8	118.9 (3)
N1—C6—C5	122.9 (3)	C46—C41—C8	122.5 (3)
N1—C6—C1	120.0 (2)	C43—C42—C41	120.9 (3)
C5—C6—C1	117.1 (3)	C43—C42—H42A	119.5
C21—C7—C31	112.2 (2)	C41—C42—H42A	119.5
C21—C7—C11	111.8 (2)	C42—C43—C44	120.0 (3)
C31—C7—C11	110.0 (2)	C42—C43—H43A	120.0
C21—C7—S1	111.69 (18)	C44—C43—H43A	120.0
C31—C7—S1	108.55 (18)	C45—C44—C43	119.4 (3)
C11—C7—S1	102.17 (16)	C45—C44—H44A	120.3
N1—C8—C51	110.1 (2)	C43—C44—H44A	120.3
N1	105.2 (2)	C44—C45—C46	120.9 (3)
C51—C8—C41	108.7 (2)	C44—C45—H45A	119.5
N1—C8—C61	109.3 (2)	C46—C45—H45A	119.5
C51—C8—C61	111.7 (2)	C45—C46—C41	120.2 (3)
C41—C8—C61	111.7 (2)	C45—C46—H46A	119.9
C16—C11—C12	117.9 (2)	C41—C46—H46A	119.9
C16—C11—C7	120.2 (2)	C52—C51—C56	116.7 (3)
C12—C11—C7	121.8 (2)	C52—C51—C8	122.5 (3)
C13—C12—C11	120.9 (3)	C56—C51—C8	120.8 (3)
C13—C12—H12A	119.5	C53—C52—C51	121.1 (3)
C11—C12—H12A	119.5	С53—С52—Н52А	119.4
C14—C13—C12	120.8 (3)	C51—C52—H52A	119.4
C14—C13—H13A	119.6	C54—C53—C52	120.7 (3)
C12—C13—H13A	119.6	С54—С53—Н53А	119.6
C13—C14—C15	119.2 (3)	С52—С53—Н53А	119.6
C13—C14—H14A	120.4	C55—C54—C53	119.1 (3)
C15—C14—H14A	120.4	С55—С54—Н54А	120.5
C14—C15—C16	120.6 (3)	С53—С54—Н54А	120.5
C14—C15—H15A	119.7	C54—C55—C56	120.0 (3)
C16—C15—H15A	119.7	С54—С55—Н55А	120.0
C11—C16—C15	120.6 (3)	С56—С55—Н55А	120.0
C11—C16—H16A	119.7	C55—C56—C51	122.1 (3)
C15—C16—H16A	119.7	С55—С56—Н56А	118.9
C22—C21—C26	117.1 (3)	С51—С56—Н56А	118.9
C22—C21—C7	121.5 (2)	C66—C61—C62	118.3 (3)
C26—C21—C7	121.2 (2)	C66—C61—C8	119.5 (3)

C21—C22—C23	121.6 (3)	C62—C61—C8	122.2 (3)
C21—C22—H22A	119.2	C61—C62—C63	119.9 (3)
C23—C22—H22A	119.2	C61—C62—H62A	120.1
C24—C23—C22	120.4 (3)	C63—C62—H62A	120.1
C24—C23—H23A	119.8	C64—C63—C62	121.2 (3)
C22—C23—H23A	119.8	C64—C63—H63A	119.4
C23—C24—C25	119.1 (3)	C62—C63—H63A	119.4
C23—C24—H24A	120.4	C63—C64—C65	119.2 (3)
C25—C24—H24A	120.4	C63—C64—H64A	120.4
C26—C25—C24	120.6 (3)	C65—C64—H64A	120.4
C26—C25—H25A	119.7	C66—C65—C64	120.1 (3)
C24—C25—H25A	119.7	C66—C65—H65A	119.9
C25—C26—C21	121.2 (3)	С64—С65—Н65А	119.9
C25—C26—H26A	119.4	C65—C66—C61	121.3 (3)
C21—C26—H26A	119.4	С65—С66—Н66А	119.3
C32—C31—C36	117.4 (3)	C61—C66—H66A	119.3
C7 S1 C1 C2	77 1 (3)	C_{11} C_{7} C_{31} C_{36}	68 2 (3)
$C_{7} = S_{1} = C_{1} = C_{2}$	-105.3(2)	$S_{1} = C_{7} = C_{31} = C_{30}$	-42.8(3)
$C_{1} = C_{1} = C_{0}$	-103.3(2)	$S_1 = C_7 = C_{31} = C_{30}$	-42.0(3)
$c_0 - c_1 - c_2 - c_3$	-1704(2)	$C_{30} = C_{31} = C_{32} = C_{33}$	1.0(4)
$S_1 = C_1 = C_2 = C_3$	-1/9.4(2)	$C_{1} = C_{31} = C_{32} = C_{33}$	1/0.5(3)
$C_1 = C_2 = C_3 = C_4$	-0.7(4)	$C_{31} = C_{32} = C_{33} = C_{34}$	-0.8(3)
$C_2 = C_3 = C_4 = C_5$	-1.5(3) 1.2(5)	$C_{32} = C_{33} = C_{34} = C_{35}$	-0.7(3)
$C_{3} = C_{4} = C_{3} = C_{0}$	1.5(5)	$C_{33} = C_{34} = C_{35} = C_{30}$	1.5(3)
C_{8} N1 C_{6} C_{1}	51.0(3)	$C_{34} = C_{35} = C_{30} = C_{31}$	-0.3(4)
C_{δ} NI C_{δ} Cf NI	-151.0(3)	$C_{32} - C_{31} - C_{30} - C_{35}$	-0.9(4)
C4 = C5 = C6 = C1	1/8.4(3)	$C/-C_{31}-C_{30}-C_{33}$	-1/5.7(2)
C4 - C5 - C6 - C1	1.0 (4)	N1 = C8 = C41 = C42	51.0(4)
$C_2 = C_1 = C_0 = N_1$	179.5 (5)	$C_{31} = C_{8} = C_{41} = C_{42}$	-60.9(3)
SI = CI = C0 = NI	1.7(3)	$C_{01} = C_{8} = C_{41} = C_{42}$	109.5(3)
$C_2 = C_1 = C_0 = C_3$	-3.1(4)	N1 - C8 - C41 - C40	-130.5(3)
SI = CI = C0 = C3	1/9.3(2)	$C_{31} = C_{8} = C_{41} = C_{46}$	111.0 (3)
C1 = S1 = C7 = C21	52.5(2)	$C_{01} = C_{01} = C_{41} = C_{40}$	-12.0(4)
C1 = S1 = C7 = C31	-/1./(2)	$C_{40} = C_{41} = C_{42} = C_{43}$	2.1 (5)
CI = SI = C/ = CII	1/2.12(18)	C8 - C41 - C42 - C43	-1/9.3(3)
C6-N1-C8-C51	-94.4 (3)	C41 - C42 - C43 - C44	-0.4 (5)
$C_{6} = N_{1} = C_{8} = C_{41}$	148.7(3)	C42 - C43 - C44 - C45	-1.1(5)
$C_{0} = N_{1} = C_{0} = C_{0}$	28.6 (4)	C43 - C44 - C45 - C46	0.9 (5)
$C_2I = C_1 = C_1I = C_1I_0$	-98.2 (3)	C44 - C45 - C46 - C41	0.8 (5)
	27.1 (3)	C42 - C41 - C46 - C45	-2.2 (5)
SI_C/CIICI6	142.2 (2)	C8-C41-C46-C45	1/9.2 (3)
$C_2I = C_1 = C_1I = C_1I_2$	/8.6 (3)	NI-C8-C51-C52	21.6 (4)
$C_3I = C_7 = C_{11} = C_{12}$	-156.0(3)	C41 - C8 - C51 - C52	136.3 (3)
SI_C/CI1CI2	-40.9(3)	C61—C8—C51—C52	-100.0 (3)
C10-C11-C12-C13	-2.0(4)	N1 - C8 - C51 - C56	-159.5 (3)
C_{1} C_{11} C_{12} C_{13} C_{14} C_{12} C_{14} C_{14}	-1/9.0(3)	C41 - C8 - C51 - C56	-44.8 (<i>3</i>)
C11 - C12 - C13 - C14	1.0 (5)	051-051-052-052	/8.8 (3)
C12 - C13 - C14 - C15	-0.4 (5)	C50-C51-C52-C53	-3.9 (4)
C13—C14—C15—C16	-0.5 (5)	C8—C51—C52—C53	175.0 (3)
C12—C11—C16—C15	1.2 (4)	C51—C52—C53—C54	1.3 (5)

C7—C11—C16—C15	178.2 (3)	C52—C53—C54—C55	2.0 (5)
C14-C15-C16-C11	0.0 (4)	C53—C54—C55—C56	-2.3 (5)
C31—C7—C21—C22	-119.3 (3)	C54—C55—C56—C51	-0.5 (4)
C11—C7—C21—C22	4.7 (3)	C52—C51—C56—C55	3.6 (4)
S1—C7—C21—C22	118.5 (2)	C8—C51—C56—C55	-175.3 (3)
C31—C7—C21—C26	55.8 (3)	N1-C8-C61-C66	45.9 (3)
C11—C7—C21—C26	179.9 (2)	C51—C8—C61—C66	168.0 (2)
S1—C7—C21—C26	-66.4 (3)	C41—C8—C61—C66	-70.1 (3)
C26—C21—C22—C23	0.7 (4)	N1-C8-C61-C62	-132.9 (3)
C7—C21—C22—C23	176.0 (3)	C51—C8—C61—C62	-10.8 (4)
C21—C22—C23—C24	0.6 (5)	C41—C8—C61—C62	111.1 (3)
C22—C23—C24—C25	-0.9 (5)	C66—C61—C62—C63	-0.7 (4)
C23—C24—C25—C26	-0.2 (4)	C8—C61—C62—C63	178.1 (3)
C24—C25—C26—C21	1.7 (4)	C61—C62—C63—C64	0.0 (5)
C22—C21—C26—C25	-1.9 (4)	C62—C63—C64—C65	0.1 (5)
C7—C21—C26—C25	-177.2 (2)	C63—C64—C65—C66	0.5 (5)
C21—C7—C31—C32	18.8 (3)	C64—C65—C66—C61	-1.1 (4)
C11—C7—C31—C32	-106.3 (3)	C62—C61—C66—C65	1.2 (4)
S1-C7-C31-C32	142.7 (2)	C8—C61—C66—C65	-177.6 (3)
C21—C7—C31—C36	-166.7 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N1—H1…S1	0.81 (3)	2.46 (3)	2.984 (3)	123 (1)

